
Journal of Statistical Physics, Vol. 66, Nos. 3/4, 1992 

Dynamics of Mean-Field Spin Models from 
Basic Results in Abstract Differential Equations 

F. Bagarello l and G. Morchio 2 

Received May 29, 1991 

The infinite-volume limit of the dynamics of (generalized) mean-field spin 
models is obtained through a direct analysis of the equations of motion, in a 
large class of representations of the spin algebra. The resulting dynamics fits into 
a general framework for systems with long-range interaction: variables at 
infinity appear in the time evolution of local variables and spontaneous 
symmetry breaking with an energy gap follows from this mechanism. The 
independence of the construction of the approximation scheme in finite volume 
is proven. 
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INTRODUCTION 

Mean-field spin models (MFSM) play an important role in quantum 
statistical mechanics (QSM) both for their phenomenological relevance 
(see the "spin" formulation of the BCS model in refs. 1, 2) and as "exactly 
solvable" models showing general characteristic phenomena of QSM. The 
construction of the dynamics of MFSM does not fit, however, into the 
standard treatment of spin models (see, e.g., ref. 3); in fact, due to the long- 
range and volume dependence of the mean-field interaction, the infinite- 
volume limit of the dynamics cannot be controlled as in the case of short- 
range interactions, c4) and it does not give to a well-defined transformation 
of the local (spin) variables into themselves./5'6) 

In such a situation, the construction of the dynamics in infinite 
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volume can be based on two different strategies: (i) one essentially.takes 
the limit of correlation functions (at all times) for certain sequences of 
(time-translation invariant) finite-volume states, time evolution being 
defined in finite volume (2'7 9); (ii) for a class of representations (of the 
quasilocal algebra) one takes the strong limit, for volumes going to infinity, 
of the time evolution defined in finite volumes; (5'1w12) here the states do not 
depend on the volume and only enter to define the notion of convergence 
of algebraic objects. 

Strategy (i) is limited to a restricted class of representations of the spin 
algebra, typically those defined by ground or finite-temperature states. This 
limitation, the strong dependence of the construction on the representation, 
and therefore the absence of an algebraic formulation of the models in 
infinite volume, lead in particular to: 

1. The impossibility of discussing the time evolution of classical 
(mean) variables out of thermal equilibrium. 

2. The impossibility of formulating the KMS consition as a restric- 
tion which identifies the thermal states on the basis of a given dynamics. 

3. The loss from the beginning, through the choice of the representa- 
tion of the spin algebra, of the symmetries of the Hamiltonian, so that 
questions about spontaneous symmetry breaking cannot even be posed. 

As a consequence, the implications of MFSM as prototypes of systems 
with long-range interactions, in particular for the mechanism of symmetry 
breaking with an energy gap, are not clear in this approach. 

The second strategy has been applied to the mean-field Ising model in 
ref. 5 and to a class of "generalized Ising" mean-field models in ref. 13. The 
construction of the dynamics of general MFSM has been given in ref. 11. 
The purpose of the present paper is to present the proof of the results of 
ref. 11 in a slightly generalized version; we also discuss their implications 
for the general problems of the dynamics of systems with long-range inter- 
actions and for the KMS condition, proving that for general MFSM, 
strategy (i) gives rise to the restriction to a special class of representations 
of the dynamics resulting from strategy (ii). 

The construction of the algebraic dynamics for (generalized) MFSM 
has also been performed in refs. 14 and 15 with different methods (for 
related results see refs. 16--20). A construction of the infinite-volume 
dynamics of MFSM in a spirit similar to ours has been given in ref. 21 as 
an application of rather sophisticated mathematical structures (quasi-*- 
algebras and topologies for unbounded operators) which do not seem to us 
to be the most appropriate for MSFM, where only bounded variables are 
involved. 
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The infinite-volume limit of the dynamics is obtained here directly 
from the analysis of the equations of motion of spin variables in finite 
volumes. This analysis only requires almost straightforward generalizations 
of elementary results on differential equations with analytical coefficients 
(in a spirit similar to that of Section 2 of ref. 22); it also applies to a wider 
class of models, essentially whenever variables at a lattice point are only 
coupled to a fixed number of variables, which may depend on the volume 
but have a well-defined infinite-volume limit. 

The paper is organized as follows: In Section 1, the problem is for- 
mulated and the strategy explained. In Section 2, the results are shown to 
follow from abstract results about differential equations for variables in C* 
algebras. Section 3 contains the analysis of abstract differential equations. 
In Section 4, we prove that our construction of the dynamics gives the 
same result as the one based on the convergence of correlation functions, 
for a large class of representations of the quasilocal (spin) algebra; we then 
point out some implications on the structural properties of the dynamics of 
systems with long-range interactions, the KMS condition, and spontaneous 
symmetry breaking with an energy gap. 

1. M O D E L S  A N D  S T R A T E G Y  

Mean-field spin models are defined by a state space C 2 at each site of 
a lattice 7/d and by the finite-volume Hamiltonians 

1 

H V - I v I  i,j~v ~,p=1,2,3 i~v ~=!,2,3 

where i, j e 7 / a  (the dimensional d playing a minor role), cr~ are the Pauli 
matrices acting in the two-dimensional space at site i, V is any finite subset 
of 7/a, ] V[ is the number of its points; A ~ is a Hermitian matrix and C ~ are 
real numbers, so that H v is Hermitian. 

For A ~ = 6  ~, the Hamiltonian (1.1) defines the Heisenberg-Weiss 
model; for 

A~B_ = _To  - i  1 C a=  --~1~ ~3 

2 0 0 

It gives the Hamiltonian of the BCS model in the lattice formulation of 
Thirring. (1,2) 
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Our treatment applies to a larger class of models, defined by a state 
space .~  at each site i of 7/a, which ov~= U J t  ~, Ur isometric, and by finite- 
volume Hamiltonians 

1 
.... k :~. ~ (1.2) Ov--lV]k-1 Z Z Acq mil "'mik 

i l - - ' i k 6  V ~ t l - . . o t  k 

c~ c~ 1 M s where V is a finite subset of 7/a and [ V[ its cardinality, M i = UiM Ui , 
a linear basis for the algebra of n x n matrices, M ~ = M~; A ~1 .... k = ~ k  .... 1, 
so that H v  is Hermitian. The Hamiltonians (1.1) and (1.2) have no mean- 
ing for IV[ = oo and our scope is to construct the dynamics in infinite 
volume as a limit of the Heisenberg dynamics in finite volumes. 

Let d v be the C* algebra generated by the matrices MT, i e V, and d 
the norm-closure of U v d r .  Since H v  is in d r ,  the Hamiltonians (1.2) 
define a one-parameter group of automorphisms of d by 

A ~ ~v(A)  = exp( iHvt )A  e x p ( - i H v t )  (1.3) 

For  lattice models with short-range interactions the limit for V ~  oo of 
av(A) exists in the norm topology of d and defines a group of 
automorphisms of d (see ref. 7). Norm convergence does not hold, 
however, for the dynamics defined by the Hamiltonians (1.1), (1.2), as one 
can see immediately from the solution of special models(5); the point is that 
the solution involves the operators a~ = (1/JV[)52~ v a~, which do not 
define a Cauchy sequence in the norm topology. 

Following the strategy (ii) mentioned above, and in particular the 
general scheme developed in refs. 11, 12, we will show that the finite- 
volume Heisenberg dynamics ~ ( A )  converges, for each A ~ d ,  in the 
ultrastrong topology defined by a class o~ + of states over d ,  and that 
the limit defines a group of ultrastrongly continuous automophisms of the 
strong closure of d .  By V--* oo we mean that we take an increasing 
sequence { V, } of subsets of 7/d such that each lattice point i belongs to V, 
for n >~ n(i); some regularity condition may be assumed on the sequence of 
volumes (e.g., one may consider only cubes), and all the results are inde- 
pendent of such conditions, in the sense that any change in the notion of 
convergence is only reflected in the identification of the set f f  + of states 
which define the relevant (ultra-) strong topology. 

Technically, we shall consider a class Y + of states, i.e., positive linear 
functionals, over the C* algebra d ,  which is the positive part of a set 
of continuous linear functionals over d with the following properties: 

FI:  ~,~ is closed under linear combinations and norm limits. 

F2: if c o ( . ) E f f  and A, B E d ,  then c o ( A . B ) e f f .  
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A set of states with the above properties is exactly the sets of normal states 
in some family of representations of d (ref. 12, Proposition2.1), and 
therefore a "full folium" in the sense of ref. 23. 

We shall first construct ~ § as the largest set of states such that the 
space ergodic means of the matrix variables M[  exist in the (ultra-) strong 
topology defined by them; this set will turn out to be the largest for which 
~v converges ultrastrongly [for all Hamiltonians of the form (1.2)]. 

We shall then analyze the equations of motion satisfied by ~v(M~), 
and reduce the ~-(ultra-) strong convergence of ~ ( M ~ )  to a problem of 
dependence upon the initial conditions of (a system of) differential equa- 
tions with analytical coefficients for variables in a C* algebra. As a result, 
strong convergence of space ergodic means of M~ will imply strong 
convergence of ~(MT).  

Strong convergence of ~ ( A )  will follow for any A e ag, and the limit 
of c~ will define a group of strongly continuous automorphisms of the 
algebra generated by d and by the ergodic mean variables 

1 
~-ul t ras t rong-l im ~ ~' M 7 (1.4) 

i e V  

The abstract results on analyticity and dependence upon initial values for 
differential equations in C* algebras are rather straightforward generaliza- 
tions of well-known results and will be proven in Section 3. 

2. THE I N F I N I T E - V O L U M E  L IMIT  OF THE D Y N A M I C S  

2.1. The Class of Relevant  States 

A class Y +  of states is defined as follows: Given a state (i.e., a positive 
linear functional) co over d ,  denote by ~ ,  the Hilbert space defined by 
the Gelfand-Naimark-Segal (GNS) construction on sr and co, and by 
0~o the vector which represents co in afo,: co(A) = (~'o,, A0o,). Call a state co 
admissible if 

1 
lim~176 ~ 7 , ~ v  M, ~'o, (2.1) 

exists in the strong Hilbert space topology of ~o,. Notice that, for 
uniformly bounded sequences of operators, the strong and ultrastrong 
topologies coincide (see, e.g., ref. 24); we will therefore simply refer to the 
strong topology here and in the following. 

D e f i n i t i o n  2 .1 .  Let ~ +  be the set of all admissible states and 
the linear space generated by o~ +. 



854 Bagarello and Morchio 

Proposition 2.2. (11) f f  satisfies properties F1 and F2 of Section 1; 
equivalently, ~- + is a full folium in the sense of ref. 23. 

Proof. FI: Strong convergence of (2.1) is equivalent to 

co M;-IV,--~] • M 7 -~0 a s V a n d V ' - - , o o  (2.2) 
i i ~  V '  

and, by uniform boundedness in norm of the operators, if (2.2) holds for 
a norm-convergent sequence con, it also holds for its limit. 

F2: If A edvo for some Vo, then, due to the commutation of 
variables at different sites, 

1 1 ~vM;O~+I1VI 2 [M,,A]O~ (2.3) [VI Z M~At#o~=A - -  
i~ V ~ l  i i~ V 0 

The norm of the second term in the rhs is of order 1/I V[, so that, if co is 
admissible, A0~ represents an admissible state, i.e., the state co(A*.A) is 
admissible. The same holds for any A in d ,  by norm limits of states. 

The result for c~(A*-B), VA, B e d ,  follows immediately by writing 
this linear functional as a sum of states of the form co(C*- C). QED 

By Proposition 2.2, strong convergence (with a fixed meaning for 
V ~  ~ )  of ergodic means of the variables M 7 identifies a class of linear 
functionals ~ with the properties F1, F2; its positive part ~ +  will be 
called "the family of relevant states." ~ + (which has a dependence upon 
the notion of infinite-volume limit) always contains all translation-invariant 
product states, i.e., states co such that, for different lattice indices i l . . - ik  
and Vi, 

co(Mi] l . . -  M~ k) = ~o(M~).. .  co(M; k) 

A more general result is the following. 

Proposition 2.3. Let co be invariant under the automorphisms of 
d defined by all exchanges of lattice points: 

co(M,1'.-. M~k ) -- co(g~ ' . - .  M)~) 

Vii. . .  i~ all different and Vjl- . . jk  all different. Then a} is in i f +  (for any 
notion of infinite-volume limit; see Definition 2.1 and Section 1). 

Proof. As in Proposition 2.1, we must prove 

1 1 M ;  ~ 0 as V and V' E M ; -  I V,--- 5 -* 
i ~ V  i ' 



Mean-Field Spin Models 855 

By expanding the sums in the above expression and separating terms at the 
same lattice point, one obtains, with V c  V', 

; ' =z ' ') 
i~vl ] +,. ,IV'l - - 5 -  ,~,,-IVl IP:/ co(M;M~) 

+ Z ~ + Z - 2  Z co(M;M;)  
i , j~  V i, jE  V' i~ V, jE  V' I V l  I-V-~ 

i r  i r  iv~j 

(, ,) 
= 1 Vr I V'I [co(M;M;) - ~o(M?Mj~)] --, o 

as v, v ' ~  oc. QED 

2.2. The Equations of Mot ion  and the Limit of the 
Dynamics as V - *  oo 

Given a finite-volume Hamiltonian of the form (1.2), the time evolu- 
tion in finite volume of the variables M 7 satisfies the differential equations 

d i ' " Z Z ~v(Mi)=lVl ~ - ~  ~ , . . . o r  v =, . . . .  ,~ 
A ~, .... ~ccv([M~.. .  ~k Mfk, M~]) 

i 
-- ivik 1 S 2 A~' .... k S 

is " ' ' i k E  V cQ " ' ' ~ k  j =  l . . . k  

, M~,...M~j 1M~M?J+~...Mi] ~) X O~V( ii - - ~ j - I  ~ - - t j + 1  

= i  S A~I .... ~ S C~j~ 
~1 ""~ j =  1 . - - k  

. . a v ( M v  ) X a v ( M v )  ' ~,_, a v ( M v  ) ' ~ .. e v ( M  v)  (2.4) 

with C ~  defined by 

y 

and 

| ~ m ~ 
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The equations of motion for the variables M v in volume V follow 
immediately from Eq. (2.4), by summing over is  V: 

_d ~(M~) 
dt 

: i  E A~I .... k E C~j~ 
~ l ' " ~ k  j =  l " " k  

t ~.1 t ~ j - -  1 t fl t ~ j +  1 X a v ( M v ) . . . a v ( M  v ) a v ( M v ) ~ v ( M  v ) . . . ~ v ( M ~  ~) (2.5) 

Equations (2.4) and (2.5) form a closed system of differential equa- 
tions for the variables M 7 (with i a fixed lattice point) and M~v; intro- 
ducing vectors x v and y~ given by Xv=~ - C~v(M~) and yv=t _ ~tv(M~v) ' we find 
that Eqs. (2.4) and (2.5) take the form 

d t , d 
~ X v =  f ( X v ,  Yv),  ~ Yv  = g(Y~v) (2.6) 

The crucial point is that the (vector) functions f and g which appear in 
Eq. (2.6) are independent of V and polynomial in their variables. 

In Section 3 we shall prove (Theorems 3.4, 3.5) and equations of the 
form 

d 
X,  = F(Xt)  (2.7) 

with X, a vector with components in a C* algebra and F analytic have (for 
small It[) a unique solution, which is an analytic function of the Cauchy 
data Xo, and converges ultrastrongly (with respect to any given ultrastrong 
topology) when X 0 does. From these results we get: 

Theorem 2.4. (m The finite-volume dynamics a'v(A ) defined by the 
Hamiltonians (1.1) or (1.2) converges in the ultrastrong topology defined 
by the set of states ~ +  introduced in Definition 2.1, for any A s~r to a 
group of ultrastrongly continuous automorphisms ~' of the algebra 
generated (by sums, products, and norm-limits) by d and by the ergodic 
means 

Proof  

~-ul t ras t rong-l im I-~ E M;  
i ~ V  

1. The existence of the ultrastrong limit 

lim t ~ t o~ v (Mi  ) - c~ ( M  i ) 
V---~ oo 
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follows, for ]tt small enough, from Theorems 3.4 and 3.5: in fact, a~(MT) 
is the solution (Theorem 3.4) of a system of equations of the form (2.6), 
with f and g polynomials and initial data X~ M;,~ yOv = M~'v, since 
M~ converges ultrastrongly as V--, ov by definition of Y,  the solution 
converges ultrastrongly (Theorem 3.5). Since (ultra-) strong convergence 
commutes with sums and products, C~v(A) converges ultrastrongly for any 
A E (J v ~r by combining strong convergence with a norm limit, it follows 
immediately that c~v(A ) converges ultrastrongly for any A in d and the 
limit d(A) preserves sums, products, and * operation. 

2. By Theorem 3.5, d(MT) satisfies the differential equations 

and 

d 
e'(MT) = f f (a ' (Mf ) ,  cd(M~ )) 

dt 
(2.8) 

d 
dt d ( M ~ )  = g~(a'(M~)) (2.9) 

with f and g defined by Eqs. (2.6) and 

M ~ -  lira 1 ~ M7 (2.10) 
V--~ oo ~ ]  i ~ V 

From Theorem 3.4 it follows that d(MT) is an analytic function, i.e. 
(Section 3), a norm-limit of polynomials, of the variables Mf  and M~;  d 
therefore maps M 7 into the algebra generated (by linear combinations, 
products, and norm-closure) by the matrix algebra at the site i and by the 
ergodic means (2.10). The algebra ~r is therefore mapped by cd into the 
algebra generated by d and the algebra d o  generated by the ergodic 
means (2.10). 

3. By Eq. (2.8) and Theorem 3.4, d (Mv)  is an analytic function of 
M~v and M~ and therefore it converges ultrastrongly as V ~ oo. It follows 
that the family o~ + of relevant states is stable under the (transpose of the) 
time evolution cd and therefore (see, e.g., Proposition 2.2 in ref. 12) d is 
continuous in the ultrastrong topology defined by W+. In particular, the 
time evolution of an ergodic mean (2.10) coincides with the ergodic mean 
of the time evolution; this also follows directly from Eqs. (2.6), (2.8), and 
(2.9) and the uniqueness of their solution. 

4. The group property of d follows (for times small enough) from 
Eqs. (2.8) and (2.9) and the uniqueness of their solution; in particular, cd 
is invertible and is therefore an automorphism of the algebra generated by 
s~' and doo. 
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5. As an automorphism, c( preserves the norms and therefore, since 
the length of the time interval for which et is constructed only depends 
upon the norm of the Cauchy data (Theorem 3.4), the same construction 

t converges can be repeated for a sequence of intervals of equal length; c~ v 
therefore ultrastrongly for any t, the limit satisfies Eqs. (2.8) and (2.9), and 
all the results hold for all times. QED 

We remark that the stability of ~-+ under the transpose of c(, which 
is equivalent to ~-+-ultrastrong continuity of e~,(~z) is the same as 
"existence of the Schr6dinger picture" for the dynamics, a point which has 
been the subject of some debate in the literature (see refs. 13-18). 

3. A B S T R A C T  D I F F E R E N T I A L  E Q U A T I O N S  

In this section we give the proof of the results on analytic differential 
equations in C* algebras needed in Section 2. Results and proofs are 
almost straightforward generalizations of their counterparts for analytic 
differential equations for variables in C" (see, e.g., ref. 25). Theorem 3.4 
holds in complete normed algebras, while Theorem 3.5 makes use of a C* 
and Von Neumann structure in order to deal with sequences of Cauchy 
data which do not converge in the norm topology. 

Defini t ion 3.1. Given a Banach algebra, i.e., a complete normed 
algebra N, a map f :  ~ ~ ~) is called analytic if it is given by a norm-limit 
of polynomials, uniformly on bounded sets. 

More generally, consider the space ~ n  ~ x .-. x ~.  The space Nn is 
a Banach space with the norm it(x1,..., xn)JJ---supi lJx~Jj. 

Defini t ion 3.2. A map f -  (f~ ..... fk): ~n ~ Nk is called analytic if, 
for i =  1 ... k, f i  is a norm-limit of polynomials (in n variables), uniformly 
on bounded sets in ~n. 

Defini t ion 3.3. A map f :  I c  ~ x ~ "  ~ Nk is called analytic if it is 
a norm-limit of polynomials (in all the variables), uniform on the products 
of the interval I with the bounded sets of ~".  

It follows from the above definitions that the composition of analytic 
functions is analytic and that norm limits of analytic functions, uniform on 
bounded sets, are analytic. 

Consider now equations of the form 

dX 
dt F(X(t)) (3.1) 

with X~ ~ "  and dX/dt defined by Jj. JJ-lim~o[X(t + e ) -  X(t)]/e. 
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T h e o r e m  3.4. For any Xo s Nn, to e N, Eq. (3A), with F analytic, 
has a unique solution X(t, Xo) such that X(to, X0)=Xo, defined for 
I t - to]  < r, r a positive constant depending on F and IIXol[; X(t, Xo)is an 
analytic function of t and Xo. 

ProoL The solution is controlled, by the fixed point method, as 
a norm limit of analytic functions of t and Xo (see, e.g., ref. 25, 
Theorem 2.2.2). For fixed to ~ ~, let suC~.b be the space of analytic functions 

Y: [ to-r ,  t o+r]xCr  n 

satisfying Y( to, X) = X, with the norm 

II Yllr.b --= sup [[Y(t,X)[[~o 
It tol <~r, llXIl <~b 

Since F is analytic, the composite function F(Y(t, JO) is analytic, for any Y 
in sea.b, and 

T(Y)(t, X) =- X+ F(Y(s, X)) ds 
o 

is in ~r since the integral of an analytic function is analytic and 
T(Y)(to, X)=X.  Equation(3.1) for the variable Y(t), with Y(to)=X , is 
equivalent to 

f/ r(t, X)= X +  F(Y(s, X)) ds (3.2) 
0 

i.e., Y= T(Y). Existence and analyticity of the solution of Eq. (3.2), for any 
X in N~, follow from T being a contraction of the spheres 

Sb ~ { Y ~ ~.b" It Y( t, X) -- Xl[r.b ~ b } 

for any positive b and r = r(b) defined as follows: Since F is analytic, there 
exist constants M(a), L(a) such that 

IIF(X)II ~ M(a), IIF(X)- F( Y)JI <~ L(a) [IX--Y[I 

VX, Y with IlXll ~ a, 1[ YJI ~< a. 
It follows that, for Y(t, X) e Sb, 

][ T ( Y )  - X I I  r ,b  = sup 
It tol <~r,]lXIl <~b 

ftto F( Y(s, X)) ds ~ rM(2b) 
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since HXH ~ b, Is- to]  ~ r, and Y~ Sb imply bl Y(s, X)ll ~< 2b. Furthermore, 

fj II T ( Y )  - T(Z)II r,b = s u p  F(Y(s, X)) - f (Z(s ,  X)) ds 
It tol<~r,l[Xll<~b o 

<<. rL(2b)II Y -  Zll r,b 

and therefore T maps Sb into itself, and it is a contraction, if 

r(b)<min(L(2b) 1, bM(2b)1) 

The same argument also proves that T is a contraction in the space of 
functions Y(t, X) which are continuous in t, with the same norm, and this 
implies that the solution of Eq. (3.2) is unique. QED 

T h e o r e m  3.5. If M is a C* algebra, ~ an ultrastrong topology on 
~ ,  and ~ the Von Neumann algebra obtained from ~ by closure in the 
topology 3, then the solution X(t, Xo) of Eq.(3.1) with F analytic 
(Theorem 3.4), depends continuous on Xo in the ultrastrong topology z 
(for the components Xi of X and Xoi of Xo). 

X(t, Xo) extends by z-continuity to the unique solution of Eq. (3.1), for 
variables in the product of the Von Neumann algebras ~ ,  defined by 
X(to) = Xo, Xo e ~ .  

Proof. For any fixed t, X(t, Xo) is an analytic function of Xo, i.e., a 
norm-limit of polynomials in Xo~. Since products are (jointly) continuous 
in (any) ultrastrong topology, (24) all polynomials converge ultrastrongly 
when the variables converge ultrastrongly, and so do their norm limits. By 
taking ultrastrong limits and using the analyticity of F, one sees that 
Eq.(3.1) is still satisfied, with d/dt defined as an ultrastrong limit 
lim~_~o(X(t+a)-X(t))/~. Since, by taking ultrastrongly convergent nets 
which are bounded in norm, F extends to an analytic function on the 
product of the Von Neumann algebras ~ ,  we can apply Theorem 3.4 to 
Eq. (3.1) for variables in ~ and obtain that, for initial conditions Xo in 
~ " ,  X(t, Xo) is still analytic; its time derivative exists therefore as a norm- 
limit. QED 

R e m a r k .  It follows from the proof of Theorem 3.4 that X(t, Xo) 
depends continuously, with the norm of Mn, upon F with the topology of 
norm convergence, uniform on bounded sets. Therefore all the results hold 
when the functions f and g which appear in Eq. (2.6) depend on the 
volume, provided they converge (in norm, uniformly on bounded sets) 
when V ~  ~ ,  in fact, norm convergence of X(t, Xo) for fixed X 0 and 
V ~  ~ implies strong convergence of X when also Xo depends on the 
volume and converge strongly, and this implies the results of Theorem 2.4. 
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4. EQUIVALENCE OF STRATEGIES A N D  D ISCUSSION 

In this section we shall prove that the dynamics of the (generalized) 
MFSM constructed in Section 2 gives the same result for the correlation 
function at all times as the contruction based on the convergence of the 
correlation function ("strategy one" mentioned in the Introduction) for a 
large class of finite-volume states, including Gibbs states at finite and zero 
temperature. 

We shall then discuss briefly the implications of our results for the 
following subjects: 

Dynamics of the MFSM out of thermal equilibrium. 

General features of the dynamics of systems with tong-range inter- 

. 

2. 
actions. 

3. 

4. 

Symmetry breaking and generalized Goldstone theorem. 

KMS condition. 

In the treatment based on finite-volume correlation functions (mg~ one 
considers a ground or Gibbs state co v and takes the infinite-volume limit 
of 

�9 ..C~v(A,)), A i 6 d  (4.1) 

We will prove that, for any (generalized) MFSM, correlation functions of 
the form (4.1) converge to 

co(~tl(A i) �9 �9 �9 ~"(A,)), A i ~ d  (4.2) 

with ~' constructed in Section 2, provided only that: 

(i) The states COy are invariant under the permutation of lattice 
points, a property always satisfied, as a consequence of the sym- 
metry of the Hamiltonian under all exchanges of lattice points, 
by Gibbs states (for ground states there are exceptions in the 
presence of degeneracy; see below). 

(ii) They converge to ~o on d as V ~ o e ,  i.e., the correlation 
functions at time 0 converge (and define the state o~). 

P r o p o s i t i o n  4.1. Let ~o v be a ,-weakly convergent sequence of 
states over the algebra d (introduced in Section 1): 

O~v(A)~o~(A ) V A ~ d  

and let each co v be invariant under the group of automorphisms of d 
generated by all exchanges of lattice points (Section 2). Let Hv be given by 
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Eq. (1.2) [in particular, (1.1)] and ~v by Eq. (1�9 Then ~o belongs t9 -~-+ 
and 

t l  tn a) v(O;v(A1) . . . .  ~v (A . ) )  

converges for V ~  oo, VA1... A,  E.~r V t l . . . t  ~ real, to 

with e' constructed in Section 2. 

Proof. 1. o9 is in ~ + by Proposition 2.3�9 

2. By Theorem 2.4, ~v(MT) is a norm-limit, uniform in V, of polyno- 
mials in the variables M( and (1/[ V [ ) Z ~  v MT, and cd(M~) is a norm-limit 
of the same polynomials in the variables M~ and M ~ ;  by an approxima- 
tion in norm (and the fact that the matrices M~ are a linear basis for the 
algebra of matrices at lattice point i), it is therefore sufficient to prove 
convergence of all the correlation functions, on COy, of the variables M~ 
and (1/[ V I ) ~  v MT to the corresponding correlation function, on (~, of 
M f  and M ~ ;  these are well defined, since co is in o~ + 

3. Convergence of such correlation functions is controlled as in the 
proof of Proposition 2.3: by symmetry under exchanges of lattice points, it 
is enough to consider correlation functions of the form 

1 
Mik MJ1 . . . m J .  ) 

Jl.--in e 
(4.3) 

with i l . . . i k  all different. With an error of order 1/IVI, as in Proposi- 
tion 2.3, the terms with at least two equal lattice indices can be ignored; the 
above sum coincides then with 

� 9  ~ k  f l l  f t .  MJ, . . .  M}~ ) (4.4) 

with lattice indices all different; by symmetry under all exchanges of lattice 
points, this is independent of the lattice indices and converges, by assump- 
tion, to 

o)(M~. . .  M~,kMgI. B, ..MJ~ ) (4.5) 

This coincides with 

--ik --oo "'" M ~  ) (4.6) 
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since expression (4.6) is the limit for V ~  oo of 

1 
MJ, . . .  MJ. ) E v~Ti;co(Mit...lr [ ~k ~1 fin 

J l  - -  - J n  �9 

which differs from (4.5) by order 1/[ VI. QED 

Proposition 4.1 is of some interest in order to compare the general 
strategies for the construction of the dynamics of systems with long-range 
interactions discussed in the Introduction; from its proof it also follows 
that the assumption of invariance of ~0v under permutations of lattice 
points can be considerably relaxed: all that is needed is that the limit state 
co be in .~- + and that correlation functions of local and mean variables over 
the volume V converge to those of local and ergodic variables. 

It must be remarked that it is easy to construct, for models with 
degenerate ground state, e.g., for the antiferromagnetic Ising model, 
examples of ground states co v which converge, for V--, ~ ,  to states which 
are not i n / ~  +, i.e., states which give rise to representations where ergodic 
limits do not exist and cd is not therefore even defined. Such examples are, 
however, exceptional in the following sense: if one considers states co~ = 
lim~_~ ~ c@, with co~v states at finite inverse temperature fl (the states co~ 
are invariant under exchanges of lattice points, but in general not pure), 
then their limit for V-~ ov is in o~ + and this implies, by definition of o ~ +, 
that all states appearing in their central decomposition are in ~ +, apart 
from a set of zero measure. 

We now turn to points l-4 mentioned above. 

l. On the basis of the construction given in Section 2, the dynamics 
of the MFSM can be discussed in a large class of representations of the 
(spin) algebra which do not in general decompose into factorial representa- 
tions invariant under time evolution. This allows for a nontrivial dynamics 
of ergodic means and therefore provides models for the "dynamics of classi- 
cal variables out of equilibrium." Such variables would be represented by 
time-independent c-numbers (24) in any factorial representation defined, as 
is the case for a dynamics constructed following strategy (i), by a state 
invariant under time translations. As a consequence of the continuity of cd 
in the (ultra-) strong topology defined by ~ (Theorem 2.4), the dynamics 
of ergodic means describes the dynamics of mean variables over large finite 
volumes and therefore has a direct physical meaning. 

2. The general characteristic features of the dynamics of systems with 
long-range interactions (11) are shared by MFSM: 

(i) The removal of the volume cutoff requires a strong topology, 
which is essentially given by the class of representation (of the 

822/66/3-4-12 
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quasilocal algebra) where the equations of motion in infinite 
volume make sense. 

(ii) Variables at infinity appear in the time evolution of local 
variables, giving rise to a nontrivial center of the algebra stable 
under time evolution. 

(iii) In time-translation invariant factorial representations, the 
dynamics ~t is described by automorphisms ~t~ of an algebra 
with trivial center; the automorphisms ~'~ depend upon the 
representation. Here this algebra can be identified with d ;  in 
fact, ~ acts in the algebra generated by d and d o  and the 
elements of d o  are represented by time-translation-invariant 
(complex) numbers in any time-translation-invariant factorial 
representation of d .  

3. As is easily seen in special models, spontaneous symmetry 
breaking (SSB) in MFSM is not accompanied in general by the absence of 
an energy gap, and the occurrence of this phenomenon in the BCS model ~1~ 
shows that this mechanism has nontrivial physical implications. SSB in 
MFSM follows in fact ~11) the general mechanism of SSB in models with 
long-range interaction proposed in refs. 11 and 12: a generalized Goldstone 
theorem relates the energy spectrum at momentum going to zero [of the 
states obtained by applying, to a (space- and) time-translation invariant 
state, the density of charge which generates the symmetry] to the dynamics 
under ~'~ of the means of the order parameter over large regions of space. 
This dynamics is not trivial, since the symmetry of the (finite-volume) 
Hamiltonians implies the symmetry of ~', but fixing the variables at infinity 

" the transformation properties of to c-numbers spoils the symmetry in ~ ,  
~t determine the energy spectrum ~26) and are decided by the transformation 
under the symmetry of the ergodic variables and by the values they take 
in g. 

Since their dynamics only involves strictly local and infinitely 
delocalized (ergodic mean) variables, MFSM can be seen as prototypes for 
the mechanism of SSB with an energy gap; even more, from this point of 
view, they are a sort of "simplest effective model" for the description of the 
low-energy spectrum in the presence of SSB without energy gap. 

We remark again that the symmetry properties of the Hamiltonian are 
lost if the dynamics is constructed in special representations; one has then 
a situation with explicit, rather then spontaneous, symmetry breaking. The 
two approaches give strongly different results ~27) in the presence of 
"external fields": in presence of spontaneous symmetry breaking, the order 
parameters follow the symmetry-breaking terms, while an explicit breaking 
contributes to the determination of the order parameters; as explained in 
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ref. 27, this mechanism applies to nontrivial models and problems; e.g., a 
formulation giving rise to a spontaneous breaking of axial U(1) symmetry 
in QCD leads to the alignment of the 0 parameter with the fermion mass 
term and therefore to the absence of strong CP violation. 

4. For (spin) systems with short-range interactions, the states co 
which arise as infinite-volume limits of finite-volume Gibbs states at inverse 
temperature /3 (or appearing in their central decomposition) are charac- 
terized (3'6) by the Kubo-Martin-Schwinger (KMS) condition: VA, Be  d ,  
F~,8(t ) =- co(e ' (A)B) is an analytic function of t in the strip 0 < Im(t) < i/~, 
and 

F~,e(t)  = F~, A (t + ifl) (4.7) 

For MFSM, if the infinite-volume dynamics is defined in terms of correla- 
tion functions, the KMS condition must be formulated (8) as an analyticity 
property of the infinite-volume correlation functions with respect to a time 
evolution which is not constructed independently; it is not therefore a 
condition on the states, on the basis of a given dynamics. 

On the other hand, the results on the connection of the KMS condi- 
tion with thermodynamical and stability properties (see ref. 6) are based, 
also for MFSM, on the KMS condition (4.7), where a t is assumed to be 
constructed as a strong limit in some class of representations of the spin 
algebra. 

Our results, in particular Proposition4.1, imply that for all 
(generalized) MFSM, the construction of the dynamics based on correla- 
tion functions and that based on strong limits coincide, for a large class of 
finite-volume states, and this implies that the limits of finite-volume Gibbs 
states are always KMS, also in the sense of Eq. (4.7). 

We stress that this result holds for the dynamics cd, but not for 
dynamics constructed with reference to restricted classes of states, in 
particular not for a (fixed) c~'~; a nontrivial center is again necessary in 
order to formulate the KMS condition as a relation between dynamics and 
states. 
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